The Perils of Discrete Resource Models

William Cushing
Dept. of Comp. Sci. and Eng.
Arizona State University
Tempe, AZ 85281

Abstract

Finding and expressing a computationally tractable abstrac-
tion of the real world, for the purpose of plan synthesis, is
extremely challenging — even when the scope of inquiry is
severely limited. In the case of modeling complex behavior
on resources, such as fuel or battery charge, Fox and Long
propose an intuitive methodology: pessimistically discretize
access. This methodology is satisfactory in many situations,
however, naive attempts to enforce capacity constraints are
prone to failure. The difficulty is that the technique tracks a
lower bound and so is inappropriate for enforcing an upper
bound.

We present two extensions of the modeling technique that al-
low enforcing upper bounds in a principled fashion. The first
idea is to discretize the resource optimistically, yielding an
upper bound on the actual resource profile. The second idea
is to pessimistically track a dual variable.

The conditions necessary for the naive approach to succeed
are quite strong, which motivates our extensions. Nonethe-
less, it is desirable to simplify domain models whenever
possible. We suggest modeling in the most general, least
error-prone, manner possible, and subsequently optimizing
by compiling in knowledge (ideally, automatically). In pur-
suit of this we define the domain abstraction/approximation
problem in quite general terms and present our analysis as
motivation for general modeling techniques and automatic
domain simplification tools.

Introduction

A resource is a useful thing to have, typically the greater the
quantity the better. Effectively modeling the behavior of re-
sources is surprisingly tricky though. It is first of all difficult
to precisely predict the exact behavior of the world. Even
when that is possible, current planning technology does not
handle change over time. Older technology, for example
Zeno (Penberthy & Weld 1994), does support change over
continuous intervals of time, however, for the sake of com-
putational efficiency (among other reasons), current plan-
ners insist on “instantaneous changes”. So in order to cope
with a lack of knowledge about the real world, and for the
sake of computational efficiency, we are faced with the prob-
lem of effectively discretizing the behavior of resources.
Fox and Long suggest a lower-bound paradigm for mod-
eling resources (see Figure 1), based on the intuition (for
resources) that “more is better”. That is, preconditions of

David E. Smith
Intelligent Systems Division
NASA Ames Research Center
Moffett Field, CA 94035-1000

start end

actual profile

| lower envelope |

Figure 1: Modeling a lower bound (Fox & Long 2003)

actions are assumed to always be lower-bound checks on the
fluent encoding the behavior of the resource. The technique
is simple: “delay” all production to AT-END, and “hasten”
all consumption to AT-START. This models a lower bound
on the resource instead of the actual behavior: the actual
resource profile will be everywhere at least as large as in
the model. In other words, the model preserves correctness
(since preconditions are “always” lower bounds).

However, there is a significant obvious weakness: encod-
ing upper bounds. Typically, we are only interested in lower
bounds on a resource, but it is also entirely normal for a
resource to have a capacity. A capacity constraint is, of
course, an upper bound on a resource. The naive idea is
to directly enforce the capacity constraint against the model;
however, the model only tracks a lower bound, so that the
model may be less than the capacity while the actual be-
havior exceeds it. Nonetheless, the naive approach has the
desired result if some special conditions apply to ones do-
main.

In general, the solution is to model the resource using two
fluents: one for enforcing lower bounds and the other for
enforcing upper bounds. We discuss two variations for sup-
porting upper bounds, which may be understood as taking a
dual in time or in state. The first idea is to explicitly track
an upper bound on the resource by delaying consumption to
the end and hastening production to the beginning (the op-

posite in time). The second idea is to track a lower bound
on the dual of the resource: the amount of available storage
(the opposite in state). The actual behavior of the dual is the
negation of the primal behavior, which is discretized into a
lower bound in the normal fashion.

Hastening consumption and delaying production does not
alter the net usage of an action, nor, therefore, of a plan. So
the major sacrifice in all of these approaches to discretization
is that access to resources is slowed — a concurrent produc-
tion and consumption could succeed in the real world, but
the model may require delaying the consumption activity
to after the production. If it happens to always be possi-
ble to delay consumptions then this apparent sacrifice is an
enormous blessing: a loosely coupled planning and sched-
ule approach could find such delayed plans very rapidly in
a discretized model, and then recover the tighter plans us-
ing rescheduling techniques in a detailed model. Even when
delaying consumptions is impossible, for example because
concurrent consumption is necessary to avoid overfilling
storage during a production, one can still recover complete-
ness by employing a more precise discretization, or more
generally, a more precise approximation. That is, one would
only need an “infinitely precise discretization”, i.e. a model
of the true behavior, if the only solutions require perfectly
synchronous activity.

Background

We stay within the general scope of PDDL and the planners
which parse it, that is, a durative action based perspective on
change and deterministic worlds (Fox & Long 2003). How-
ever, accurate models of the real world cannot be expected
to obey any special restrictions; for example, models of the
real world are allowed to have effects in the middle of ac-
tions (Smith 2003), effects as arbitrary functions of time and
state (non-constant, non-linear, discontinuous, ...), and so
forth. The figures define our meaning precisely enough; we
limit ourselves to a short definition of effect:

Definition 1 (effect) An effect e changes a fluent f over an
interval of time I(e). It may be one of two kinds of change:

1. An additive effect

2. An assignment effect

Two effects are mutually exclusive if they attempt to cause
change to the same fluent at the same time and either one
is an assignment effect. A set of concurrent additive ef-
fects yields the same result as applying each sequentially
(the summation of all of them).

Of course it is entirely unrealistic to expect accurate mod-
els of the real world to be infinitely precise or entirely de-
terministic, as is suggested in the figures. All that is meant
is that one has sufficient predictive ability that any further
noise due to uncontrolled/unmeasured variables is insignif-
icant for the purposes of planning. It is often the case that
uncertainty remains important, for example, the duration of
a flight from one city to another often exceeds the nominal
value quite significantly. It is only in very controlled sit-
uations that reliable accurate predictions are possible: egg

timers are manufactured and sold because the variables af-
fecting the process of boiling an egg can be tightly con-
trolled. In the long run, developing effective abstraction
techniques for uncertain models is important, but as we will
show even the very restricted problem of “deterministic” be-
havior on resources is complex enough to warrant in-depth
consideration.

So the problem we are considering is of transforming a
“true” but infeasible model (of deterministic behavior on re-
sources) into a feasible model. Feasible is meant in a practi-
cal sense: a model is infeasible if one cannot use it to auto-
matically synthesize plans. That could be because no imple-
mented planners can even parse the model, or because one
would never have the patience to wait for the solution. In
terms of current planners, the least common denominator is
that effects be:

1. Constant except at endpoints
2. Independent of state, except at those endpoints

So, for practical reasons, one must discretize effects, fur-
ther getting rid of any dependence on intermediate values
of the state trajectory (getting rid of integrals or differential
equations, for example).

start end
|
|
|

actual profile

lower envelope |
| |

Lower-bound
(at start (+= f; 1))
(atend (+= f; (— n 1))
Assignment (at start (= f; 1))
(atend (= fi; n))

Additive

Figure 2: Modeling a lower bound

Capacity in Lower-bound Modeling

Discretizing effects requires knowledge of what values or
ranges of values are important in achieving conditions of ac-
tions; for example, reasonable discretizations of movement
and position are possible, but often one needs to be at least
somewhat adaptive (so that areas with more clutter are dis-
cretized finer). We focus on the special case of resources;
what distinguishes a resource from an arbitrary fluent is that
the only useful thing about a resource is that one have more
of it. So, for example, fuel is a resource because it would al-
ways be better to have more fuel. The position of a vehicle,
on the other hand, is not a resource because there isn’t any
ordering of possible positions so that “bigger” positions are
always “better”. There is some subtlety in this perspective:

there can be negative interactions between resources, so that
acquiring more mobility (i.e., acquiring less load) requires
dumping fuel. This does not mean that having low fuel is
good, but rather that consuming fuzel can be used to increase
mobility, which is in turn useful (because it shortens the du-
ration of a movement action, perhaps). The ideal situation
would be to have an infinite amount of weight-less fuel.

This distinction between general purpose fluents (posi-
tion) and resources is perhaps interesting in its own right,
but it is also immediately useful in terms of discretizing. In
particular, the preconditions for action success involving a
resource f are always lower bounds: f > v. Enforcing such
conditions only requires tracking a lower bound on the ac-
tual behavior: figure 2 depicts the basic approach (Fox &
Long 2003). There is a fluent f being effected by either
an additive or assignment effect e(¢), which is a function
of time in the real world. The final value, e(end), is the net
change in the fluent, and the one that persists. So for sequen-
tial planning, it would be enough to discretize all changes by
simplifying every effect from e(t) to just “(at end (<op> f
e(end)))”. To allow concurrency, one ensures a lower-bound
by transitioning to the minimum AT-START, and returning to
the net effect AT-END.

In short, the actual behavior is always larger than the dis-
cretized lower bound, so enforcing the (lower-bound) pre-
conditions for action success in the discretization correctly
enforces these preconditions with respect to the actual be-
havior as well. What is not correctly enforced in this frame-
work, however, is a capacity constraint on the resource.
While action preconditions must all be lower bounds, a re-
source may still have a capacity: a global upper bound. The
naive method is to enforce the capacity constraint against
the discretized lower bound. While in general this method
fails, it is sometimes possible to get away with enforcing ca-
pacity restrictions only against a lower bound. Observe that
the lower bound, f;, equals the actual behavior whenever all
change has ceased. To show that the naive method succeeds,
one needs to prove that, for each effect of a plan in the dis-
cretization:

1. If the lower bound is less than the capacity at the end,

2. then the actual behavior is less than the capacity over the
whole duration

In particular, consider applying some effect, by itself, in
a situation that results in the lower bound meeting the ca-
pacity: fi(end) = c. If, as in Figure 2, the actual behavior
exceeds the net change, then a discretization has no hope of
correctly enforcing a capacity constraint. So a critical prop-
erty that a domain must satisfy for the lower-bound approach
to succeed is: the maxima of effects must be bounded by the
starting and ending values.

Definition 2 (endpoint-bounded) A setr of effects is
endpoint-bounded if applying them always yields a
trajectory with extrema only at its endpoints.

Discretized effects, applied in isolation or in concurrent
sets, are endpoint-bounded if the extrema of actual trajecto-
ries are bounded by the extrema of the modeled trajectories
(which occur at the endpoints in a discretization).

Observation 1 Every discretized effect, applied to a state
by itself in the model, must be endpoint-bounded for there
to be any hope of correctly enforcing capacity constraints
against it. The minimum is guaranteed for free; the impor-
tant extra property is that the maximum is bounded.

This observation is only a necessary condition for the suc-
cess of the naive method: sets of concurrent effects do not
inherit the property of endpoint-boundedness. In the fol-
lowing we consider several examples of sufficient conditions
which guarantee that such sets of concurrent effects only vi-
olate capacity if the lower bound violates capacity.

Alternating Consumption and Production

A production action monotonically increases a fluent, and a
consumption action monotonically decreases a fluent. Both
kinds of effects are endpoint-bounded in isolation, and sets
of purely one kind inherit that property (follows immedi-
ately from monotonicity). If, in addition, every consumer is
mutually exclusive with every producer, then any solution
consists of periods of purely production, purely consump-
tion, and persistence — in each of these periods the actual
behavior is endpoint-bounded, so enforcing capacity against
the lower bound is sufficient.

Theorem 1 If:

1. Every effect is montonic, and

2. Every consumption is mutually exclusive with every pro-
duction

then enforcing a capacity constraint against a discretized
lower bound correctly prevents actual behavior from violat-
ing the capacity constraint.

The general situation, then, is plans that have concurrent
production and consumption activities. Consider the simple
example of a resource with capacity ¢, a producer with a net
effect of +c, and a consumer with a net effect of —c. Sup-
pose one starts off at c. Then producing and consuming over
the same interval, in the discretization, transitions from c,
to 0, and back to c. However, suppose (in the real world)
that production and consumption happen linearly, with pro-
duction 5 times as fast as consumption. Then it is clear that
one would exceed the capacity if one starts the production
anywhere close to the beginning of the consumption. In par-
ticular, this example demonstrates that a domain must satisfy
fairly strong conditions in order for us to allow concurrent
production and consumption while still enforcing a capacity
constraint directly against fj.

Slow, Cautious, and Sequential Production

We can allow concurrent production and consumption, un-
der a number of restrictions. First of all we need that produc-
tion occurs sequentially: at any given time, at most one pro-
duction occurs. Second we need that each such production is
cautious, which means that it refuses to start if it would lead
to a violation of capacity without future intervention. In par-
ticular, each production of f by v has a precondition of the
form: “(at start (< (+ f; v) ¢))”. Finally we need that each
such production is slow — if a consumption is executing,
regardless of whether a production is occurring, the instan-
taneous rate of change is everywhere non-positive. That is,

producing while consuming only serves to slow down the
rate at which the resource is depleted.

Then the actual trajectory is not precisely endpoint-
bounded, but, it is increasing only when all consumption has
ceased (because production is slow). If only production is
occurring, then the activity is unique (because production is
sequential) and the actual trajectory can exceed the lower-
bound by at most the net effect of the single production, and
this is upper-bounded by the capacity since each production
is cautious.

Theorem 2 If:

1. Every effect is monotonic, and

2. Every production is slower than the slowest possible con-
current consumption

3. Production cannot start if future consumption is required
to avoid exceeding capacity

4. Productions are not concurrently executable

then enforcing a capacity constraint against a discretized
lower bound correctly prevents actual behavior from violat-
ing the capacity constraint.

Productions must be cautious in addition to slow because
otherwise one could just delay starting any concurrent con-
sumptions until just before a capacity-exceeding production
ends. In the discretization, all of the consumption happens
immediately before all of the production, so that the capac-
ity constraint remains, erroneously, satisfied — in the actual
trajectory, all but an arbitrarily tiny amount of the produc-
tion has already occurred, so the capacity is already vio-
lated before the consumption even begins. By forbidding
productions that can be predicted to exceed capacity with-
out future intervention, one ensures that concurrent produc-
tion and consumption have predictable relative rates, allow-
ing exploitation of slowness to prove correctness.

Productions must be slow in addition to cautious: con-
sider starting a quick production of the entire capacity in
the middle of a long consumption of the entire capacity. At
the beginning of the production, the prediction of the final
amount is based on the prediction of the current amount,
which is based on hastening all of the consumption to the
beginning of its interval (before the production starts). So
the production can proceed, in the model, despite being cau-
tious. In the actual trajectory not all of the consumption will
have in fact happened when the production ends, so the ca-
pacity will be exceeded.

Productions must be sequential in addition to all the
other properties because otherwise one could start two slow
capacity-filling productions concurrently, neither of which
is capable of predicting the presence of the other (to notice
that the summation is exceeding the capacity). If one starts
a quick consumption to burn off the excess production, near
the end of these two productions, the actual behavior will
exceed the capacity but the discretization will not.

So this kind of model allows exploiting concurrent pro-
duction and consumption to get faster plans, but only if do-
ing so (executing production and consumption concurrently)
isn’t actually necessary for respecting the capacity con-
straint. In particular, modeling a factory/refinery/machine-
shop is still difficult: one may wish to model large produc-

tions and consumptions on the same, small, tank/storage-
area. In this scenario, sequential plans fail, but concurrent
plans can balance the rates of filling and emptying.

Decrease + Reset

Enforcing a capacity constraint is a trivial matter if it can
never be violated under any circumstances, that is, if capac-
ity is not so much a constraint but rather an emergent phe-
nomenon. A good example is if every production is actually
a reset, then there is no need to check the capacity constraint
because it cannot be violated.

Theorem 3 If every additive effect has a maximum at most
0, and the maximum of any executable assignment effect
does not violate the capacity, then violating capacity is im-
possible.

That is, if every additive effect is a consumption, then the
only productions are assignment effects (i.e., resets), which
are mutually exclusive with everything else. It is then a
relatively straightforward matter to only model such non-
capacity-violating productions. Capacity can only ever be
violated by increasing, so clearly capacity cannot be violated
in this kind of model.

In PDDL, one should take care to model such resets so
that they are, in fact, mutually exclusive with other changes.
This is a little more challenging than it sounds: effects are
always instantaneous and effects at distinct times cannot
be mutually exclusive. One solution is to introduce an ab-
stract ternary lock for each resource, with modes assigning,
adding, constant, with the appropriate preconditions and ef-
fects on all actions modifying the resource. A preferable
solution is to explain the mutual exclusion in terms of the
domain physics. For example, when production and con-
sumption of a resource are mutually exclusive because they
require the same conduit, for example a tank with one access
pipe, then modeling access of the pipe introduces a mutual
exclusion between production and consumption (of the ma-
terial in the tank). This is preferable because the source of
the mutual exclusion is correctly named; it will be much eas-
ier to adapt the model when the world changes (a separate
pipe is added, another tank is added as output to the original

pipe, ...).

Summary

The lower-bound methodology is not adequate for modeling
resources in general, in particular resources with capacity
present difficulties that straightforward extensions are un-
able to overcome in general, and require the domain in ques-
tion to satisfy fairly strong properties when the techniques
do work — properties that tend to vanish if the agent or
agents gain even mild extensions to capability. Nonetheless,
when such properties are known to hold, such simplifica-
tions to the model could produce some gains in performance
for planning systems, if only by decreasing the time it takes
to generate state descriptions. The principled approach is
to model the domain using a general, less error-prone, tech-
nique and to produce a related optimized model when prop-
erties are known to hold. This of course requires having
(and adhering to) a general framework: we present two such
methods for modeling resources with capacity.

Upper-bound Modeling

start end

actual profile

Upper-bound
(at start (+= f,, u))
(atend (+= fy (— n w)))
Assignment (at start (= f,, u))
(atend (= f, n))

Additive

Figure 3: Modeling an upper bound

The key difficulty in enforcing a capacity constraint is a
violation of our basic assumption about a resource: ‘“more
is always better”. When producing, we must take care not
to violate a capacity constraint: in this particular situation,
less is better. One way to support such upper-bound condi-
tions is to simply repeat the manner in which lower-bound
conditions are supported: track an upper-bound trajectory
(in addition to a lower-bound trajectory). So for any given
resource f we can track the normal lower bound, f;, as well
as an upper bound, f,. Figure 3 shows the details. Basi-
cally, every increase should happen AT-START, and every
decrease should happen AT-END. Then any arbitrary upper-
bound constraint, including a global capacity constraint, can
be checked against f,,.

The reason endpoint-boundedness for isolated effects was
important in the preceding is that we were inferring an upper
bound from f;, which is normally just a lower bound. How-
ever, at the endpoints of changes, f; regains equality with f,
thereby becoming an upper bound (as well as lower bound).
It was this property that was exploited to enforce capacity,
but one must have some additional means of bounding in-
termediate values in terms of values at endpoints if such an
approach is to succeed.

If one is more careful, as we are in the figure, one need
not even use the assumption that isolated actual trajectories
are endpoint-bounded: f, is always an upper bound, so it
is sufficient to enforce that f, is less than the capacity over
the duration of the plan. The approach is clearer if we spe-
cialize the presentation in the following way — consider the
actual trajectory induced by an additive effect and a starting
value (or just the trajectory of an assignment effect). Find
the starting, final, minimum, and maximum values over that
interval and discretize using 4 effects:

1. (at start (— = f; (starting — minimum)))
2. (atend (4 = f; (final — minimum)))

3. (at start (+ = f, (maximum — starting)))
4. (atend (— = f, (maximum — final)))

These are more or less equivalent to the effects given in
the figure, but closer to the following intuition: “for a lower
bound: consumption at start, production at end; for an up-
per bound: production at start, consumption at end”. The
above description adds the insight that general resource ef-
fects are simultaneously productions and consumptions. For
pure production/consumption effects, half of the discrete ef-
fects simplify to addition or subtraction by 0 (no-ops).

This method easily supports capacity constraints, in fact,
even dynamically changing upper bounds can be verified, so
that in fact this methodology is appropriate even for numeric
fluents that are not really resources (like, say, the position of
a robot). Viewed in this way, it is clear that what is being
modeled is the uncertainty in the intermediate state of a de-
terministically known transition, when that uncertainty is re-
stricted to intervals. If, for example, one wanted to state the
precondition that a robot be within a certain distance of a tar-
get position (in one dimension, say), it would be enough to
check that the lower and upper bounds on the uncertainty in
its position were within that distance. Viewed from this per-
spective, one could further extend this method to relax the
restriction that f;(t) = f.(t) = f(t) whenever all change
has ceased — to support the modeling of domains where
one does not in fact know the actual behavior any more ac-
curately than interval-valued uncertainty around the actual
value.

Dual Resource Modeling

An alternative approach is to stick to the philosophy that
it is always better to have more of a resource, in par-
ticular, one insists that only lower bounds are permissi-
ble. How, then, to handle capacity? The idea is that ca-
pacity is always an emergent phenomenon of the world:
a summary of one’s physical limits (Fox & Long 2003;
Hoffmann 2002). Such limits are resources as well. For ex-
ample, it is always good to have more fuel. The only reason
I cannot have as much fuel as I like (on a given vehicle) is
that there is insufficient space to store the fuel in. As another
example, consider a bathtub. One way of describing the wa-
ter in a bathtub is as a resource, with a capacity (say cur-
rently there are 10 gallons, and the capacity of the tub is 50
gallons). An alternative perspective is that there are two re-
sources: the water in the tub (10 gallons), and the free space
available for storing water (40 gallons). Naturally, the actual
amount of resource and the actual amount of free space for
storing that resource at any moment sum to a constant: the
capacity of that resource. Instead of modeling such a con-
stant directly, one can instead separately model the effects
on the two resources. Then every effect is both a production
and a consumption: a conversion of units of one resource
into another.

In particular one can model every resource f with a lower-
bound trajectory f; (of its primal value) and a lower-bound
trajectory f, of its dual value. The dual value of a resource is
just the available free space, i.e., the capacity minus the cur-
rent value. Unbounded resources can just have f; pegged

| capacity ¢

quantity e(t)

- —

/’—
_ “ spacee(t) ==~

dual lower envelope e‘l(t)

start end

Dual lower-bound

(at start (— = fyq u))
(atend (— = fyq (— n u)))
Assignment (at start (= fg (— c w)))
(atend (= fa (— cn))

Additive

Figure 4: Modeling a dual lower bound

at infinity, or dropped from the model altogether. For ex-
ample, wealth can be modeled without a dual fluent. Figure
4 presents the details of the technique. Then, enforcing a
“capacity constraint” is just a matter of ensuring one never
consumes more than the available space: “(> f4 0)”.

It is helpful to rewrite the effects in terms of the starting,
final, maximum, and minimum values of an actual trajec-
tory:

1. (at start (— = f; (starting — minimum)))
2. (atend (+ = f; (final — minimum)))
3. (at start (— = fy (maximum — starting)))
4. (atend (+ = fy (maximum — final)))

These are just two instances of an application of lower-
bound modeling: all consumption at start, and all produc-
tion at end. The subtlety is in identifying the distinction be-
tween the consumption and production of material/resource
and the consumption and production of space for storing that
resource.

The two techniques barely differ at the syntactic level.
The distinction is that the effects on f; are the negation of
the effects on f,,, and that f; is initialized to ¢ — f; whereas
fu 1s initialized to f;. If there is in fact a global upper bound
(the capacity c) then there is effectively no difference in the
techniques; both methods end up tracking an interval of pos-
sible values for the actual behavior in this case. When there
is no global upper bound then the method of tracking an
upper bound is more powerful than tracking a dual variable.
The reason is simple: the dual variable must be pegged at in-
finity if the primal variable can grow without bound. In par-
ticular, in modeling a one-dimensional continuosly chang-
ing position, the methodology of upper and lower bounds
can enforce interval constraints on position (even equality
constraints) without further restrictions (up to the precision
of the discretization), whereas the dual variable approach is

equivalent to just tracking a lower-bound (since the dual will
be stuck at infinity).

The major advantage of the dual variable approach is that
it is entirely sufficient for resources, which are a highly im-
portant class of fluents: resources usually participate directly
in the solution metric (total fuel consumed, cash left on
hand, so forth). Further there can be computational advan-
tages to the restricted form: permitting only lower bounds
can be helpful in computing heuristics. For example, con-
sider the special case of boolean propositions. It is entirely
normal to assume that all preconditions are purely positive,
or to force the issue by adding a dual proposition to en-
code the negation of the primal proposition (Lifschitz 1986;
Blum & Furst 1995; Hoffmann & Nebel 2001).

start t, t5 t, t; = end
I \ \

\
\
\
\
Mt
\
\
\
\
I

A

\ lower envelopé e (®
[

Additive Assignment
Lower (att; (+= f1 (= l; 1;-1))) (att; (= f1 15)
Upper (att; (+= fu (= u; u;—1))) (att; (= fu u;))
Dual (att; (-= fq (— u; u;—1))) (att; (= fa (= cuy)))

Figure 5: Precise discretization

start end

| lower envelope e, (t) |

(a) An approximation of airplane fuel usage.

start end

7 (0) |

(c) A tighter approximation of airplane fuel usage.

upper envelope eu(t)

start end

(d) A tight approximation of noisy behavior.

Figure 6: Better approximations [than pure discretization]

Quality in Modeling
Lines, Triangles, and Tubes oh my!

So far we have remained within the scope of current plan-
ners, that is, discretizing effects so that they are constant
over the entire duration of actions. In fact it is not that diffi-
cult to support piecewise constant behavior either computa-
tionally or syntactically — e.g., Prottle and Zeno both sup-
port effects in the middle of actions (Little, Aberdeen, &
Thiebaux 2005; Penberthy & Weld 1994). Using piecewise
constant approximations of behavior allows significant im-
provements in modeling fidelity: compare Figures 2, 3, and
5. One can further generalize from a step function basis to
any basis of functions which are syntactically and/or com-
putationally simpler to reason with than the actual physical
changes being modeled. For example, airplanes consume
more fuel while climbing than while cruising: this is a con-
cave consumption. Conversely, battery charging is convex:
it is easy to add charge in the beginning, but it becomes in-
creasingly more difficult. Note that the limits of concavity
and convexity are step-functions: see Figure 6.

If we in fact knew that a change was convex (or concave),
instead of bounding the change using upper and lower step
functions, one could instead bound the actual trajectory in-
side of a triangle. In fact, supporting piecewise constant
functions seems easier than supporting linear functions — so
that if one can reason with lines one may as well assume that
reasoning with piecewise constant functions is also possi-
ble. Taking this one step further it seems no great additional
burden to add support for piecewise linear functions, as in
Zeno (Penberthy & Weld 1994). This allows very precise
and flexible approximation, i.e., very tight “tubes” around

the actual behavior (see Figure 6). While the limit of in-
creasingly precise piecewise linear and piecewise constant
approximations are identical (both can represent arbitrary
functions if allowed infinite pieces), it is clear that piece-
wise linear bounds can achieve much greater precision using
some quota of pieces (even if one penalizes slightly for the
additional cost of reasoning with lines over discrete effects).

Lines and step functions are not the only computation-
ally tractable basis set of functions; in some applications,
one could know an approximate Fourier decomposition of
the behavior, where the sum of all uncovered amplitude was
bounded by a small constant. The possibilities are quite di-
verse, but the basic point remains the same: at the level
of planning, some sacrifice in modeling fidelity must be
made for the sake of computational efficiency. The tech-
niques discussed may be used to mitigate such losses up to
a point, as reasoning with the suggested functions is not that
much more computationally difficult than discrete effects
(just more difficult to implement). Further, doing something
is better than nothing — so any computationally feasible
model is better than no model. Still, as compared to an or-
acle, such sacrifices in modeling fidelity ultimately lead to
a loss in quality. Fortunately, one can often recover such
losses using a hybrid planning and scheduling approach —
employing scheduling against a detailed model to optimize
otherwise inefficient abstract plans.

Rescheduling

Consider Figure 7 — a very simplified version of the prob-
lem faced by an aging planetary rover every day: avoid over-
charging the (degrading) battery. In this example, recharg-
ing will exceed capacity twofold, so that regardless of any

200

qugio®
e
o
_ ol _capacity __ _ _ _ _ < - eompiro— - - == -
= £9Mbin

O/Q Co ,g d\/

~ ~ Comp; /7%;;
e e

Co,
S
Wiy

Recharge action

| |

200
upper bound

100| _capacity s

______ éeo“a‘ge > lower bound

0 | | | |

1 T T 1
upper bound

Dig consumption
lower bound
100 capacity combined upper bound

Combiney \;M

0 | | | |
combined lower bound

Figure 7: Discretizing at half-capacity

science objectives it is important to burn off the excess en-
ergy. The dig action does precisely that, and has a reason-
ably large window of opportunity within which to start in
order to achieve this goal. Any discretization approach, if
it can encode any solutions, will certainly miss some of the
potential start times of the dig, in turn likely leading to a
loss in quality (of course, this depends on exactly what the
quality metric is).

Let us suppose we discretize so that every change con-
sumes or produces half of the capacity (as in the fig-
ure). Then there is a solution — exactly one. Yet even
though this solution is quite unlikely to be optimal, we can
still be quite pleased with the discretization, because one
could take this plan and reschedule it (Bickstrom 1998;
Do & Kambhampati 2003). That is, given the plan shown
on the right of Figure 7, one could use the detailed model on
the left to infer all the possible start times of the dig action.
Note that performing inference in the detailed model can be
feasible for the purpose of rescheduling even if the detailed
model is inappropriate for planning: rescheduling is a local
search (a global search would be replanning). Béckstrom
defines two kinds of rescheduling: deordering and reorder-
ing. The generalization of deordering to temporal planning
is to consider only alternative plans with identical causal-
link proofs, and reordering generalizes by allowing alterna-
tive proofs (but keeping the set of actions the same). The for-
mer kind of rescheduling is polynomial, even linear, whereas
the latter is NP-complete; though even the latter could be
considered feasible if the planning problem is, for exam-
ple, PSPACE-complete (consider Blackbox (Kautz & Sel-
man 1998)).

Formally, we say the domain modeling problem is the task
of finding a computationally feasible abstraction of a model
of the real world, in particular procedures for mapping be-
tween the real and abstract models. The inverse procedure
— mapping abstract plans to concrete plans — can be quite
complex, involving, among other things, rescheduling.

Definition 3 An abstraction (D, T,T~') of a domain D
consists of a domain D and procedures T and T~ for trans-
lating between the domains; T maps problems from D to D
and T~ maps solutions from Dt D. Tt may be non-
deterministic.
An abstraction is correct if:

VP € problems(D),Vi € plans(T(P)),

Vr e T7Y(#), 7 € plans(P)

An abstraction is complete if:

VP € problems(D),¥m € plans(P),
37 € plans(T(P)),m € T~1(7)

An abstraction is optimal if any optimal abstract solution
contains an optimal concrete solution in its neighborhood:
VP € problems(D), V& € optimal(T(P)),

Jr € optimal(P),n € T~(%)

The discretized bounds on a resource continually return
to the actual values — so the only sacrifice in the discretiza-
tion is to slow down access to the resource (one must wait
for the bounds to return to the true value). If such delays can
be tolerated, then a hybrid approach to planning will suc-
ceed — a planner in a very coarse abstraction of the domain
can solve the action selection and ordering problems, and
a scheduler in a refined model of the domain can solve the
dispatch problem by rescheduling the abstract plan.

Definition 4 Let R denote a rescheduling procedure: a lo-
cal search in the space of alternative schedules of its input.
Let I be the trivial mapping: I(m) = 7 for all m. An abstract

model, D is complete under rescheduling when (D, T, R) is
a complete abstraction, similarly, D is complete (without
rescheduling) when (f), T, I) is a complete abstraction.

Observation 2 [f production and consumption are mutu-
ally exclusive in D, then naive enforcement of capacity in a

lower-bound discretization D is correct and complete with-
out rescheduling.

Theorem 4 If production and consumption are never re-
quired to be concurrent in (solutions to problems of) D, then
forcing a mutual exclusion and naively enforcing capacity
in a lower-bound discretization D is correct and complete
under rescheduling.

Caveat: There exist domains which do not require concur-
rency and yet possess concurrent plans which cannot be se-
quentialized (Cushing et al. 2007). However, such domains
are odd in that these unrecoverable concurrent plans have no
distinguishing side-effects.

In many real world domains, agents producing and con-
suming shared resources would make reservations ahead of
time to ensure there were no conflicts. That is, in such do-
mains there is some form of global management where each
producer and consumer reserves the appropriate amount of
space or material before making changes. The technique
of upper-bound and lower-bound modeling is equivalent to
such conservative management of the resource, as is dual-
resource and lower-bound modeling.

Observation 3 If production and consumption are conser-
vatively managed in D, then a discretization D by upper-
bound and lower-bound modeling, or dual-resource and
lower-bound modeling, is correct and complete without
rescheduling.

Theorem S If production and consumption are never re-

quired to be concurrent in D, then a discretization D by
upper-bound and lower-bound modeling, or dual-resource
and lower-bound modeling, is correct and complete under
rescheduling.

Caveat: Again there exist odd domains which have inher-
ently concurrent plans with no distinguishing side effects;
so that while plans are lost, optimality is not.

One can relax conservativeness while preserving correct-
ness and completeness: consider Figure 5. In this approach,
each update is modeled conservatively, but the action as a
whole is given multiple internal updates. In particular, the
action can begin even if the action as a whole will require
future intervention, just so long as it does not require fu-
ture intervention before the next update. Within this kind of
framework one can model individual productions and con-
sumptions that exceed capacity (in absolute quantity), per-
haps many times over. Planners that can handle only dis-
crete changes can still find the plans requiring concurrency
of such large productions and consumptions, by interleaving
many smaller discrete changes (see Figure 7). Formally:

Observation 4 There exists a sufficiently precise discretiza-
tion of any domain that is complete under rescheduling.

This holds with a caveat: there are domains that require
infinite precision. Normally one assumes that agents do not
have such perfect control, and must execute plans that would
succeed equally well if start times of actions were perturbed
justslightly. In discrete models of the world it is fine to allow
planners to synthesize plans requiring exact simultaneity, as
in Figure 7, because the very fact that one has discretized im-
plies that there is a non-empty interval of alternative sched-
ules of any plan one finds in the discrete model. The caveat

is in the other direction: when the real model, not the dis-
cretization, requires simultaneity, one can justify refusing to
deem such plans executable.

Conjecture 1 Sampling every effect twice as frequently as
the minimum window of opportunity in concrete solutions is
complete under rescheduling. Similarly, if a discretization
fails to achieve a given level of quality at a given frequency,
it requires an agent with access to the real model at least
half as much precision in dispatch control to do any better.

Our first conjecture was that discretizing actions at every
change of half the capacity of a resource would be complete
barring any external constraints (see Figure 7). The idea is
that if global bounds on the resource are the only cause for
forced concurrency, one could just delay consumption until
the resource is above the half-capacity mark and delay pro-
duction until the resource is below the half-capacity mark.
The counterexample is when neither can be delayed because
both production and consumption significantly exceed the
capacity, with very slightly different rates. It does appear
that only highly constrained domains require greater preci-
sion than this; and in these cases it might be preferable to
instead relax correctness at the planning level. Specifically,
it could be quite helpful to allow the global bounds to be
violated during periods of concurrent modification, as long
as the bounds hold whenever change ceases. Rescheduling
against the detailed model then faces the problem of pick-
ing dispatch times to put the concurrent modification within
bounds, given that the net effect remains within bounds (so
it is at least plausible that it is possible). This will cause
greater backtracking between planner and scheduler, but al-
lows much coarser abstraction while still allowing compli-
cated concurrent access to the resource.

Modeling Within Proper PDDL2.1

Writing down a model that correctly enforces a capacity
constraint is quite difficult in proper PDDL2.1. Richer lan-
guages support global constraints more or less directly; for
example, PDDL2.2 supports derived predicates, which can
be used to encode global constraints in a straightforward
manner. PDDL2.1 is, however, a highly relevant language
in that it represents the least common denominator of cur-
rent planning technology; rather more specifically, PDDL2.1
level 3 with the additional restriction of fixed durations is
the current core of supported features. In this language, one
can only express constraints on action executability, so that
global constraints must be compiled into local constraints.
There are 3 approaches for performing this compilation:

1. Assert the constraint in every action
2. Prevent actions that cause violation

3. Prevent actions that undo violation

The first method is cumbersome, especially so in PDDL
where the constraint must be given not only on each action,
but in fact 3 times per action (AT-START, AT-END, OVER-
ALL). As in the third method, this also requires that one
check the constraint as part of the goal, in order to catch the
case that the last action causes a violation AT-END.

For capacity constraints, the best compilation is to check
the capacity right after any increase in the resource, that is,
the second method. However, this is impossible in PDDL
— AT-END effects occur after AT-END conditions. If one is
willing to exploit the full technical details of the PDDL spec-
ification, then one can rewrite such a constraint so that it is
the regression of the global constraint through the enclosing
action’s AT-END effects. This will be correct as far as (our
understanding of) the specification is concerned, but there
are fine technical details involved (concerning simultaneity)
that existing planners disagree on. Moreover, many planners
handle AT-END conditions poorly, e.g., by lacking effective
heuristics to cope with such conditions, or by treating them
as OVER-ALL conditions instead of AT-END conditions.

The third method is completely counter-intuitive: one al-
lows a constraint to be violated. Correctness is preserved
by enforcing the constraint at the goal (of every problem)
and preventing actions which undo violation. In the case of
capacity constraints, the problem with this approach is the
strong temptation to move all the capacity constraints from
the consumption actions to the production actions: doing so
breaks the model. Consider, for example, the recharge ac-
tion given in Figure 8 of the PDDL2.1 specification (Fox &
Long 2003). This model allows executing recharge twice —
even sequentially — leading to an uncaught violation of the
capacity constraint (one can follow it up with one or more
navigates to burn off energy if the constraint is included in
the goal). On the other hand, this model can be fixed by
moving the constraint from the recharge action to the nav-
igate action (and to every other energy-consumer) and in-
cluding the constraint in the goal.

Needing to repeat the constraint as part of the goal of ev-
ery problem is of course very error-prone: problems and do-
mains are separate files in PDDL. By and large the least evil
for modeling within proper PDDL2.1 seems to be an opti-
mized version of the first approach:

1. Add “(not done)” as a condition on every action.
2. Add “(done)” as a part of every goal (always starts false).

3. Add “(plan-end)” as an instantaneous action to the do-
main, which checks every global constraint and gives
“(done)”.

4. Check every global constraint AT-START and AT-END on
every action.

This mitigates the maintenance problem between domain
and problem files, and is closest to the unattainable goal
of checking global constraints immediately after violations
may have occurred — instead, the constraint is checked at
the very next transition in state. One could drop the con-
straint from actions that cannot change the status of the con-
straint; however, this allows long non-goal-achieving, but
executable, plans, which must then be eliminated through in-
ference or search. Also, it makes maintenance of the domain
trickier; if the constraints change, but they are all copied uni-
formly across actions, they can be easily replaced wholesale
with the new constraints. If the treatment is non-uniform,
then manual inspection is required.

Conclusion

Domain modeling is a difficult problem, even when re-
stricted to the case of resources. We discuss the hidden
pitfalls of the current approach to discretizing resource be-
havior. In particular, modeling capacity requires much more
than a lower bound on the resource. We showed a number
of conditions that can hold in the real world that allow a di-
rect enforcement of capacity against a lower bound, but ar-
gue that the exploitation of such domain knowledge should
be reserved for automatic methods. We give in-depth de-
tails on two extended forms of resource discretization that
guarantee correctness without special restrictions on the do-
main: modeling an upper bound, or modeling a dual re-
source. The ideas themselves are not new, however, various
existing benchmarks either fail to model a second fluent or
get the details wrong (Cushing et al. 2007), including ex-
amples presented within the PDDL specification itself (Fox
& Long 2003, Figure 8). This motivates our in-depth treat-
ment of the matter, which we take further in considering a
hopefully near-term future where alternative approaches to
discretization/abstraction of complex effects can be empir-
ically compared with one another (on planning+scheduling
systems).

Acknowledgements

We thank Jeremy Frank and the anonymous reviewers for their
helpful insights. Also, this research was performed with the sup-
port of the NASA SEVH Program.

References
Béckstrom, C. 1998. Computational aspects of reordering plans.
JAIR 9:99-137.
Bedrax-Weiss, T.; McGann, C.; and Ramakrishnan, S. 2003. For-
malizing resources in planning. /CAPS Workshop on PDDL.
Blum, A., and Furst, M. 1995. Fast planning through planning
graph analysis. In IJCAIL

Cushing, W.; Weld, D.; Kambhampati, S.; Mausam; and Tala-
madupula, K. 2007. Evaluating temporal planning domains. In
ICAPS.

Do, M. B., and Kambhampati, S. 2003. SAPA: A multi-objective
metric temporal planner. JAIR 20:155-194.

Fox, M., and Long, D. 2003. PDDL2.1: An extension to PDDL
for expressing temporal planning domains. JAIR 20:61-124.
Hoffmann, J., and Nebel, B. 2001. The FF planning system: Fast
plan generation through heuristic search. JAIR 14:253-302.
Hoffmann, J. 2002. Extending FF to numerical state variables. In
ECAL

Kautz, H., and Selman, B. 1998. BLACKBOX: A new approach
to the application of theorem proving to problem solving. In AIPS,
58-60.

Lifschitz, E. 1986. On the semantics of STRIPS. In Proceedings
of 1986 Workshop: Reasoning about Actions and Plans.

Little, I.; Aberdeen, D.; and Thiebaux, S. 2005. Prottle: A prob-
abilistic temporal planner. In AAAI’0S5.

Penberthy, S., and Weld, D. 1994. Temporal planning with con-
tinuous change. In AAAL

Smith, D. E. 2003. The case for durative actions: A commentary
on PDDL2.1. JAIR 20:149-154.

